These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution of HRP in the inner ear after injection into the middle ear cavity.
    Author: Saijo S, Kimura RS.
    Journal: Acta Otolaryngol; 1984; 97(5-6):593-610. PubMed ID: 6464711.
    Abstract:
    The distribution patterns of horseradish peroxidase (HRP) reaction products in the inner ears of guinea pigs were studied after injections into the middle ear cavities and perilymphatic and subarachnoid spaces. The normal round window membrane resisted HRP penetration from the middle ear side, but when it became pathological after repeated applications, its permeability increased. HRP deposits were found in the cochlear and vestibular sensory cells and in the lumen of the endolymphatic sac. HRP reaction products were minimal at the cochlear apex even after long survival times, suggesting that perilymph flow, if it exists, is rather weak toward this direction. Whereas the stria vascularis is impermeable to HRP, the vestibular dark cells were accessible; thus, the metabolic activity of the dark cells can be more readily controlled by drug applications through the middle ear cavity. The finding of HRP deposits on the scala vestibuli surface of Reissner's membrane and the absence of HRP in the upper portion of the spiral ligament at the basal turn suggests that the oval window is a secondary route of passage for these particles from the middle ear cavity to the inner ear. In order to determine the route of HRP into the endolymphatic sac from the middle ear cavity or scala tympani, the cochlear and/or vestibular aqueducts were obliterated singly or together. The route of HRP was determined to be the vestibular aqueduct. HRP is believed to enter the sac lumen through Reissner's and saccular membranes and the sac epithelium. Drugs and other large molecular substances instilled in or gaining access to the middle ear cavity may reach the endolymphatic sac causing its functional alteration.
    [Abstract] [Full Text] [Related] [New Search]