These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skin collagen metabolism in the streptozotocin-induced diabetic rat: free hydroxyproline, the principal in vivo degradation product of newly synthesized collagen--probably procollagen.
    Author: Schneir M, Ramamurthy N, Golub L.
    Journal: Coll Relat Res; 1984 May; 4(3):183-93. PubMed ID: 6467885.
    Abstract:
    We characterized the degradation products of recently synthesized collagen present in skins of control and diabetic rats. Specifically, the TCA-soluble fractions of homogenized skins from control and diabetic rats (killed 1 and 4 hours after [3H]-proline injection) were fractionated by molecular sieve chromatography, and eluted fractions were analyzed for hydroxyproline and [3H]-hydroxyproline. Free [3H]-hydroxyproline was the principal (greater than 95%), low molecular weight (greater than 2000 daltons), [3H]-hydroxyproline-containing material eluted from the molecular sieve column, this amount representing approximately 80% (controls) and approximately 87% (diabetics) of [3H]-hydroxyproline-containing material in TCA-soluble fractions of skin homogenates. These observations are similar to those from the intracellular degradation of cellular and secretory proteins in that the principal--almost exclusive--degradation product was the free amino acid. The free hydroxyproline had a greater specific radioactivity than that in any other [3H]-hydroxyproline-containing fraction (soluble and insoluble, see below); furthermore, the total radioactivity of free [3H]-hydroxyproline was greater at 1 hour than 3 hours later. These two properties (identity with free amino acid; time-dependent decrease in amounts) are consistent with [3H]-hydroxyproline arising from the intracellular degradation of procollagen. The [3H]-hydroxyproline-containing material eluting before free hydroxyproline (designated peptidyl [3H]-hydroxyproline) was similar to free [3H]-hydroxyproline in terms of specific radioactivity and the time-dependent decreases of specific and total radioactivities, these similarities indicating that the peptidyl [3H]-hydroxyproline are intermediates in the degradative pathway of procollagen to free amino acids. Results for control and diabetic rats were qualitatively similar, with regard to the inter-fraction ratios of specific radioactivities and their time-dependent changes. However, the degradative process, as assessed by the release of free and peptidyl [3H]-hydroxyproline, was dramatically enhanced by the diabetic state, extending our previous results based on analyses of uncharacterized degradation products.
    [Abstract] [Full Text] [Related] [New Search]