These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Heterogeneity of contractile proteins. Purification and characterization of two species of troponin T from rabbit fast skeletal muscle. Author: Briggs MM, Klevit RE, Schachat FH. Journal: J Biol Chem; 1984 Aug 25; 259(16):10369-75. PubMed ID: 6469969. Abstract: Two species of troponin T have been purified by ion-exchange chromatography from erector spinae, the major fast white muscle of the rabbit back, and from a pool of the fast hindlimb muscles gastrocnemius and plantaris. Designated Tn-T1f and Tn-T2f, they can be resolved by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis, with apparent molecular weights of 37,500 and 37,000 respectively. Their amino acid compositions are similar and correlate well with that reported for troponin T from fast muscle (Pearlstone, J. R., Carpenter, M. R., and Smillie, L. B. (1977) J. Biol. Chem. 252, 971-977). Tn-T2f most likely corresponds to the previously studied troponin T; further characterization was undertaken to determine how the newly identified Tn-T1f differs from Tn-T2f. Phosphorylation of alkaline phosphatase-treated troponin demonstrated that Tn-T1f and Tn-T2f are not interconverted by a change in phosphorylation state. Comparison of the CNBr fragments of Tn-T1f and Tn-T2f by SDS-gel electrophoresis and reverse phase high-performance liquid chromatography revealed similar but not identical peptide patterns. The major difference occurs in the amino-terminal CNBr peptides corresponding to CB3. Since both Tn-T1f and Tn-T2f have blocked amino termini, the difference does not result from proteolysis at the amino terminus of one of the proteins. These observations indicate that the two species of troponin T do not result from a known post-translational modification, but rather from differences in the amino acid sequence, suggesting that they arise either from the expression of different genes or a single gene from which different mRNAs are transcribed.[Abstract] [Full Text] [Related] [New Search]