These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Acyltransferase activities in adult rat type II pneumocyte-derived subcellular fractions.
    Author: Crecelius CA, Longmore WJ.
    Journal: Biochim Biophys Acta; 1984 Sep 12; 795(2):238-46. PubMed ID: 6477944.
    Abstract:
    Acyl-CoA: lysophosphatidylcholine, acyl-CoA: lysophosphatidylethanolamine, and lysophosphatidylcholine:lysophosphatidylcholine acyltransferases were investigated using subcellular fractions derived from adult rat type II pneumocytes in primary culture. Acyl-CoA:lysophospholipid acyltransferase activities were determined to be microsomal, while lysophosphatidylcholine:lysophosphatidylcholine acyltransferase activity was found to be cytosolic. Total palmitoyl CoA:lysophosphatidylcholine acyltransferase activity was 30-fold greater than lysophosphatidylcholine:lysophosphatidylcholine acyltransferase activity, indicating that the former enzyme is more important in the synthesis of dipalmitoyl phosphatidylcholine. Palmitoyl-CoA and oleoyl-CoA lysophosphatidylcholine acyltransferase activities were approximately equal under optimal substrate conditions. Specific activities of the enzyme using arachidoyl-CoA and arachidonoyl-CoA were 46% and 18%, respectively, of those with palmitoyl-CoA. Acyl-CoA:lysophosphatidylethanolamine acyltransferase showed a preference for palmitoyl-CoA as opposed to oleoyl-CoA under optimal conditions. However, when equimolar concentrations of either palmitoyl-CoA and oleoyl-CoA or palmitoyl-CoA and arachidoyl-CoA were assayed together, the relative utilization of the two substrates was found to be dependent on total acyl-CoA concentration. At higher concentrations, the incorporation of palmitoyl-CoA into phosphatidylcholine was less than other acyl-CoAs. However, at lower concentrations palmitoyl-CoA was utilized quite selectively. Whole lung microsomes did not show as marked a preference for palmitoyl-CoA as did type II pneumocyte microsomes under these same conditions. In similar experiments, low total acyl-CoA concentrations produced greater incorporation of oleoyl-CoA into phosphatidylethanolamine. For both enzymes total activity at the lowest concentrations used was at least 45% that at optimal conditions. This demonstrates that the type II pneumocyte acyltransferase system(s) can selectively utilize palmitoyl-CoA. No evidence for direct exchange of palmitoyl-CoA with 1-saturated-2-unsaturated phosphatidylcholine in subcellular fractions from type II pneumocytes was found.
    [Abstract] [Full Text] [Related] [New Search]