These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Stomatocytosis of latex particles (0.26 micron) by rat erythrocytes by the electrical breakdown technique. Author: Schüssler W, Ruhenstroth-Bauer G. Journal: Blut; 1984 Sep; 49(3):213-7. PubMed ID: 6478060. Abstract: The uptake of macromolecules by erythrocytes can be achieved with the electrical breakdown technique [2, 4]. In this technique the erythrocyte membranes are subjected to a high external electrical field pulse for a short period. Local, reversible breakdowns of the cell membrane occur above a critical field strength which lead to a time-dependent increase in the permeability of the membrane. By this means, human erythrocyte membranes can be made permeable to DNA, pharmaceutical compounds, and latex particles following an electrical field pulse [1, 3, 5]. Larger particles should also be taken up by erythrocytes using this method. Vienken et al. [5] demonstrated the entrapment of latex particles with a diameter of 0.091 micron in human erythrocyte ghosts, although this was shown with only a single electron micrograph which does not prove that the ghost membrane was intact. In our experiments in order to entrap latex particles with a diameter of 0.26 micron rat erythrocytes were subjected to an electrical field pulse of 12 kV/cm with a decay time of 60 microseconds. Experiments using the electron microscope show that after such an electrical field pulse the uptake of latex particles by rat erythrocytes follows the stomatocytotic pathway. We show further that using electron microscopic techniques, a single section cannot demonstrate the completed uptake of a latex particle by the erythrocyte.[Abstract] [Full Text] [Related] [New Search]