These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Apolipoproteins as the basis for heterogeneity in high-density lipoprotein2 and high-density lipoprotein3. Studies by isoelectric focusing on agarose films.
    Author: Marcel YL, Weech PK, Nguyen TD, Milne RW, McConathy WJ.
    Journal: Eur J Biochem; 1984 Sep 17; 143(3):467-76. PubMed ID: 6479161.
    Abstract:
    A method is described for the isoelectric focusing (IEF) of lipoproteins on thin films of agarose. Within a pH gradient of 4.60-5.30 both high-density lipoproteins 2 and 3 (HDL2 and HDL3) are resolved into more than 10 fractions which could be stained either for protein or for lipids. The isoelectric focusing patterns for HDL2 and HDL3 are similar although HDL2 appears richer in the more alkaline bands. Narrow film strips from the IEF separation of HDL2 and HDL3 were interfaced with various agarose plates containing antisera against apolipoproteins apoAI, apoAII and apoCIII either alone or in combination, to provide two-dimensional IEF immunoelectrophoresis patterns. This technique demonstrated that apoAI and apoAII were present throughout the IEF gel for both subclasses of HDL. It also provided evidence for the existence of lipoproteins containing both apoAI and apoAII and other lipoproteins present in the alkaline region of the gel which contained apoAI but no apoAII. ApoCIII was found mostly in acidic lipoproteins and was not distributed identically in HDL2 and HDL3. The lipoproteins separated by IEF on agarose were also analysed by two-dimensional IEF-SDS electrophoresis and the individual apolipoproteins were identified by reaction with antibodies to apolipoproteins AI, AII, CI, CII, CIII, D, and E. This technique confirmed that in IEF of HDL, apoAI extended throughout the spectrum of lipoproteins whereas apoE was only present in alkaline lipoproteins and apoD was only present in acidic lipoproteins. IEF on agarose of either HDL2 or HDL3 allowed us to collect eight different fractions, which have the same pI in either lipoprotein class. The apolipoprotein composition of each isolated band was analysed by electroimmuno-assays for apolipoproteins AI, AII, CI, CII, CIII, D, and E and the results expressed as the ratio of the measured apolipoprotein to measured apoAI. In both HDL2 and HDL3, acidic lipoprotein fractions were enriched in apoAII, apoCIII and apoD. ApoCII and apoCII were not similarly distributed in HDL2 and HDL3 subfractions whereas the apoCI distribution was similar in both classes. Noteworthy in all experiments was the difference in the distributions of apoCI, apoCII, and apoCIII in HDL2 and HDL3, which indicated that the existence of a lipoprotein containing simultaneously CI, CII and CIII can only account for a small fraction of these apolipoproteins. Therefore these experiments substantiate the theory of the protein basis of HDL heterogeneity and suggest that the majority of apolipoproteins are present in complexes which upon IEF result in lipoprotein fractions of identical pI for both HDL2 or HDL3.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]