These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The role of calcium in the pathogenesis of gallstones: Ca++ electrode studies of model bile salt solutions and other biologic systems. With an hypothesis on structural requirements for Ca++ binding to proteins and bile acids.
    Author: Moore EW.
    Journal: Hepatology; 1984; 4(5 Suppl):228S-243S. PubMed ID: 6479882.
    Abstract:
    Calcium is present in all pigment gallstones as a salt of one or more of the anions in bile which are most readily precipitable by calcium: (i) carbonate; (ii) bilirubinate; (iii) phosphate, and (iv) "palmitate". We term these "calcium-sensitive" anions. In addition, since cholesterol stones have been found to contain pigment stone centers, we postulate that calcium precipitation in bile is a critical event in the initiation of cholesterol gallstones, so that the latter should be considered a two-stage process: (i) precipitation of calcium salts to form a nidus, and (ii) precipitation of cholesterol from its supersaturated state on this nidus. Any measure which will reduce free [Ca++] in bile will reduce calcium lithogenicity; possible ways to reduce [Ca++] in bile are presented. One way is to increase Ca++ binding by normal biliary constituents; we have recently pointed out that bile salts are important buffers for Ca++ in bile by virtue of binding to both free and micellar bile salts. Here, we consider some of our Ca++ electrode studies of taurocholate, glycocholate, serum albumin, and simple molecules having terminal carboxyl (CO0-) or sulfonic (SO-3) ions. A brief history of the development of the Ca++ electrode is given, along with theoretical considerations of ionic activities and techniques of electrode measurements. From the various studies, a unifying hypothesis is proposed for the structural requirements of Ca++-binding to proteins (albumin) and free monomeric bile salts. For proteins, unconjugated bile salts and glycine-conjugated bile salts, it is proposed that Ca++ binding involves a reversible ion-exchange "site" in which a Ca++ ion is interposed between carboxyl (CO0-) and hydroxyl (OH) groups. For taurine-conjugated bile salts, this "site" is proposed to involve the interposition of a Ca++ ion between the side-chain SO-3 and cholanic ring OH groups. These studies are a first step toward modulation of Ca++ activity in bile.
    [Abstract] [Full Text] [Related] [New Search]