These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of a fluoro substituent on the fungal metabolism of 1-fluoronaphthalene.
    Author: Cerniglia CE, Miller DW, Yang SK, Freeman JP.
    Journal: Appl Environ Microbiol; 1984 Aug; 48(2):294-300. PubMed ID: 6486779.
    Abstract:
    The metabolism of 1-fluoronaphthalene by Cunninghamella elegans ATCC 36112 was studied. The metabolites were isolated by reverse-phase high-pressure liquid chromatography and characterized by the application of UV absorption, 1H nuclear magnetic resonance, and mass spectral techniques. C. elegans oxidized 1-fluoronaphthalene predominantly at the 3,4- and 5,6-positions to form trans-3,4-dihydroxy-3,4-dihydro-1-fluoronaphthalene and trans-5,6-dihydroxy-5,6-dihydro-1-fluoronaphthalene. In addition, 1-fluoro-8-hydroxy-5-tetralone, 5-hydroxy-1-fluoronaphthalene, and 4-hydroxy-1-fluoronaphthalene as well as glucoside, sulfate, and glucuronic acid conjugates of these phenols were formed. Circular dichroism spectra of the trans-3,4- and trans-5,6-dihydrodiols formed from 1-fluoronaphthalene indicated that the major enantiomers of the dihydrodiols have S,S absolute stereochemistries. In contrast, the trans-5,6-dihydrodiol formed from 1-fluoronaphthalene from 3-methylcholanthrene-treated rats had Cotton effects that are opposite in sign (R,R) to those formed by C. elegans. The results indicate that the fungal monooxygenase-epoxide hydrolase systems are highly stereoselective in the metabolism of 1-fluoronaphthalene and that a fluoro substituent blocks epoxidation at the fluoro-substituted double bond, decreases oxidation at the aromatic double bond that is peri to the fluoro substituent, and enhances metabolism at the 3,4- and 5,6-positions of 1-fluoronaphthalene.
    [Abstract] [Full Text] [Related] [New Search]