These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrostatic fixed charge distribution in the RBC-glycocalyx and their influence upon the total free interaction energy. Author: Lerche D. Journal: Biorheology; 1984; 21(4):477-92. PubMed ID: 6487761. Abstract: On the basis of a recently developed biophysical model of cell-cell interaction, including electrostatic, electrodynamic, steric and bonding/bridging interaction energies the influence of different fixed charge (dissociated groups of the glycocalyx) density distributions in red blood cell (RBC) glycocalyces on the total free interaction energy was investigated. An analytical equation of electrostatic free energy on the basis of the linear Poisson-Boltzmann approach taking into account arbitrary distributions of fixed glycocalyx charges was obtained and corresponding free electrostatic energies of three example distributions were calculated. The electrodynamic, steric and bonding/bridging energies were computed as usual. It was shown that the free energy as a function of interaction distances strongly depends on the charge distribution and, correspondingly, the "weight" of this energy term in the total free interaction energy balance equation. Generally, it can be stated that as more charges are assumed to be fixed in the outer layer of RBC glycocalyx as more important becomes the electrostatic energy in contrast to the remaining three terms.[Abstract] [Full Text] [Related] [New Search]