These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The effects of caffeine on tension development and intracellular calcium transients in rat ventricular muscle.
    Author: Konishi M, Kurihara S, Sakai T.
    Journal: J Physiol; 1984 Oct; 355():605-18. PubMed ID: 6492005.
    Abstract:
    The effects of caffeine on tension and intracellular [Ca2+] were investigated in rat ventricular muscle using the Ca2+-sensitive photoprotein, aequorin. Contracture was induced by rapid application of 0.5-10 mM-caffeine solution at 20 degrees C. In normal Tyrode solution at 8 degrees C, or in Na+-deficient solution in which Na+ was isotonically replaced by sucrose, peak tension of caffeine contracture was potentiated and relaxation was prolonged. Caffeine contracture could not be induced immediately after a prior contracture. Repriming time was 10 min in Tyrode solution, and was much shorter in Na+-deficient solution or in high-K+ solution containing 105.9 mM-K+. Caffeine prolonged the plateau of action potential dose dependently. At low temperature, prolongation of the plateau phase by caffeine was more marked. Twitch tension showed a triphasic change after application of caffeine; peak tension transiently increased in a potentiating phase (P phase), and then decreased below control level in an inhibitory phase (I phase) followed by gradual recovery in a recovery phase (R phase). The effects of caffeine on the Ca2+ transients during a twitch were also complex, depending on time after application and dose of caffeine. In low caffeine concentration (below 0.5 mM) the peak of the Ca2+ transient was potentiated in the I phase, although the peak tension was suppressed. At high concentration (above 3 mM) the peaks of both the Ca2+ transient and twitch tension were suppressed. In every concentration of caffeine tested (0.1-5 mM), time to the Ca2+ transient and twitch tension peaks was prolonged, and the falling phases of both were delayed. Caffeine might release Ca2+ from intracellular store(s) and enhance the slow inward current. The Ca2+ transient obtained in this study clearly indicate that the prolonged time to peak tension in the presence of caffeine is due to the slow rise of intracellular [Ca2+] and prolonged time to peak of the Ca2+ transient. It is also quite possible that caffeine modulates the Ca2+ sensitivity of a contractile system in dose- and time-dependent manners.
    [Abstract] [Full Text] [Related] [New Search]