These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Calculation of long jump performance by numerical integration of the equation of motion. Author: Ward-Smith AJ. Journal: J Biomech Eng; 1984 Aug; 106(3):244-8. PubMed ID: 6492770. Abstract: The aerial phase of the long jump is calculated by numerical integration of the equations of motion. Consideration is given to the effects on performance of the horizontal and vertical components of velocity at takeoff, aerodynamic drag, wind assistance and the vertical displacement of the center of mass which occurs during the course of the jump. For still air conditions it is shown that an analytical solution due to Lamb compares very favorably with the numerical solution, providing an excellent description of the trajectory. Calculations neglecting the effect of aerodynamic drag are shown to overestimate the jump distance of world-class athletes by from 9 to 11 cm under still air conditions.[Abstract] [Full Text] [Related] [New Search]