These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microvascular permeability in induced astrocytomas and peritumor neuropil of rat brain. A high-voltage electron microscope-protein tracer study.
    Author: Shivers RR, Edmonds CL, Del Maestro RF.
    Journal: Acta Neuropathol; 1984; 64(3):192-202. PubMed ID: 6496036.
    Abstract:
    Brain tumors, benign and malignant, are characteristically more permeable to various types of tracer molecules than the neuropil in which they are embedded. Impermeability of brain neuropil capillaries is imparted by the blood-brain barrier, the anatomic basis of which is the network of interendothelial zonulae occludentes that seal capillary endothelial cells. To explore both the vascular elements of brain neoplasms and the route of tracer extravasation from them, as well as the possible effects of brain tumors on the permeability of peritumoral neuropil capillaries, brain tumors were induced in newborn Wistar rats by intracerebral (i.c.) injection of C-6 astrocytoma cells. The protein tracer horseradish peroxidase (HRP) was injected systemically into both normal and tumor-bearing rats to mark the pathway along which it flowed into the tumor parenchyma tissue spaces, and to signal any concomitant tracer loss from the tumor extracellular compartment or peritumoral brain capillaries, into the neuropil extracellular milieu. Electron-microscopic examination of thin plastic sections of tumor and peritumoral neuropil revealed massive extravasation of tracer into the tumor tissue spaces, but none was seen outside of the capillaries in the surrounding brain neuropil. Zonulae occludentes of both tumor capillary endothelium and brain capillary endothelium were devoid of tracer and judged tight (sealed). Tracer was seen in pinocytotic vesicles in the highly attenuated endothelium of tumor capillaries and also in cytoplasmic vesicles within the tumor cells. The peritumoral and contralateral neuropil capillary endothelium exhibited reaction product-filled pinocytotic vesicles and vesiculo-tubular conduits. Often, one end of a HRP-filled vesiculo-tubular channel appeared continuous with either the luminal or abluminal plasmalemma. High-voltage electron microscopy of these conduits often showed them to be continuous with both luminal and abluminal surfaces of the endothelium, thus forming a continuum across the capillary wall. In addition, these transendothelial channels, clearly constituted as chains of fused vesicles, were often seen in close proximity to, or fused with, dense bodies in the endothelial cytoplasm. In spite of the presence of HRP-filled structures in the peritumoral neuropil capillary endothelium of tumor-bearing rats, no evidence of tracer extravasation from these vessels was apparent. These results suggest that although peritumoral and contralateral neuropil capillaries possess the machinery for extravasation of tracer, likely as a response to the presence of the neoplasm, tracer is not lost but, instead, is degraded by endothelial enzymes.(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]