These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electron transfer reactions of chemically modified plastocyanin with P700 and cytochrome f. Importance of local charges. Author: Takabe T, Ishikawa H, Niwa S, Tanaka Y. Journal: J Biochem; 1984 Aug; 96(2):385-93. PubMed ID: 6501248. Abstract: Chemically modified spinach plastocyanin, in which negatively charged carboxyl residues are replaced with positively charged amino residues, has been prepared. Four distinct species of chemically modified plastocyanin, having 1 to 4 mol of modified carboxyl residue per mol of plastocyanin, could be separated by ion-exchange chromatography on DEAE-Sephacel. The rate of electron transfer from reduced cytochrome f to oxidized singly substituted plastocyanin was 30% of that of the native unmodified plastocyanin, and the reaction rate decreased further with increasing number of modified carboxyl residues. These results indicate the importance of electrostatic interactions between the negative charges on plastocyanin and the positive charges on cytochrome f in this reaction. Since the overall net charge of cytochrome f is negative at neutral pH, the positive charges on cytochrome f involved in the reaction should be localized ones. On the other hand, the rates of electron transfer from reduced singly and doubly substituted plastocyanin to photooxidized P700 in the P700-chlorophyll alpha protein complex were similar to that of native plastocyanin, which suggests that these carboxyl residues have only a minor role in the electron transfer to P700. Although divalent cation is essential for the electron transfer from native plastocyanin to P700 at neutral pH, the triply substituted plastocyanin could donate electrons to P700 even without MgCl2, and the rate of this reaction reached the maximum at a low concentration of MgCl2 (less than 2.5 mM). The modification of four carboxyl residues per plastocyanin molecule activated this reaction to the maximum level without MgCl2.(ABSTRACT TRUNCATED AT 250 WORDS)[Abstract] [Full Text] [Related] [New Search]