These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hepatic uptake and biliary excretion of organic cations--II. The influence of ion pair formation. Author: Neef C, Keulemans KT, Meijer DK. Journal: Biochem Pharmacol; 1984 Dec 15; 33(24):3991-4002. PubMed ID: 6508848. Abstract: The influence of an anorganic anion iodide (I-) and an organic anion tetraphenylborate (TPB-) on the hepatic uptake and biliary excretion of three organic cations, triethylmethyl ammonium (TEMA), tripropylmethyl ammonium (TPMA) and tri-n-butylmethyl ammonium (TBuMA) was studied. The compounds were injected as a bolus (D = 1 mumole) and studied in isolated perfused livers. In the perfusion medium 25% of the amount of NaCl (3 mmole) was replaced by NaI, whereas in two other experiments TPB- was added to the medium in two concentrations (2 microM and 200 microM). NaI did not affect the biliary output of the three quaternary ammonium compounds (QACs) although an increased net rate of hepatic uptake was found for all compounds, most likely due to a decreased liver to plasma transport. Liver to plasma concentration ratios were increased, while the ratios between bile to liver and bile to plasma were not affected. TPB- in catalytic amounts added to the medium (2 microM) decreased the biliary output of TEMA and TBuMA, whereas the kinetic profile of TPMA was unchanged. The decreased biliary excretion rate of TEMA was explained by a decreased plasma level (due to the increased liver uptake) assuming that the small molecular weight compounds can enter the bile directly from plasma via the junctional complexes between the cells. The bile to plasma (B/P) ratio was not affected. In contrast, the bile to plasma (B/P) ratio and the bile to liver (B/L) ratio of TBuMA were decreased, compared with the control, probably due to an increased reabsorption from the bile, whereas the back transport from the liver into the plasma was also decreased. A large amount of TPB- (200 microM), added to the perfusion medium, dramatically changed the kinetic profile of the three QACs. Ion pair formation between the QACs and TPB- was supposed to be responsible for this effect. Plasma levels dropped more rapidly as a result of an increased rate of liver uptake. The biliary excretion of all compounds was greatly reduced (the excretion rates were 0.022, 0.19 and 0.18 nmole/min, compared with 0.047, 0.71 and 7.5 nmole/min for the controls). It is concluded that ion pair formation may play a role in the hepatobiliary transport. The rate of liver uptake of the QACs is enhanced in the presence of an anion, which is due to an increase in plasma to liver transport (k12) and a reduced liver to plasma transport (k21).(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]