These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Substrate inhibition in the tricarboxylic acid cycle].
    Author: Dynnik VV, Maevskiĭ EI, Grigorenko EV, Kim IuV.
    Journal: Biofizika; 1984; 29(6):954-8. PubMed ID: 6518172.
    Abstract:
    It has been shown in the experiments on rat liver mitochondria under glucose hexo-kinase load that excess of substrates of (1-20 mM) pyruvate, acetate, propionate, pent-4-enoate and malate may induce oxidation of NAD(P)H and inhibition of mitochondrial respiration (by 20-50% and more) due to a decreased rate of hydrogen production by tricarboxylic acid cycle. It has been concluded from the analysis of mathematical models and metabolite-testings which remove this inhibition that for pyruvate and acetate this inhibition is an autocatalytic one. It is related to a decreased level of CoA and oxaloacetate due to the formation of "traps" such as acetyl-CoA and alpha-kotoglutarate. For propionate and pent-4-enoate in the bicarbonate-free medium suppression of the flux in the cycle is concerned with a decreased level of CoA, acetyl-CoA and succionoyl CoA due to the accumulation of propionyl-CoA. It seems to be also concerned with the inhibition of citrate-synthetase and alpha-ketoglutarate-dehydrogenase by propionyl-CoA. Malate (in the presence of malonate) can inhibit respiration at the expense of direct inhibition of citrate-synthetase.
    [Abstract] [Full Text] [Related] [New Search]