These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Morphogenesis of chordae tendineae. I: Scanning electron microscopy. Author: Morse DE, Hamlett WC, Noble CW. Journal: Anat Rec; 1984 Dec; 210(4):629-38. PubMed ID: 6524700. Abstract: The formation of the chordae tendineae of the left atrioventricular valve in the chick embryo is described using scanning electron microscopy. These supportive structures for the valve cusps develop between days 6 and 13 of incubation. Elevations which represent the primitive papillary muscles form on the ventricular wall. These elevations bifurcate into thin, web-like folds which are attached to the primitive valve cusps. The folds are the primordia of the chordae tendineae. Linear ridges develop on the web between the cusp and papillary muscle. These ridges alternate with depressions. The depressions become perforate to create the individual chorda from the linear ridges. Multiple perforations form initially but they typically consolidate to create one large aperture between two chordae. Some interchordal connections of tissue do persist throughout the period studied. During the period of perforation, prominent rounded cells are typical of the endocardium between the chordae. These cells are similar at the scanning electron microscope level to those present in the formation of the foramina secunda of the atrial septum. Primary, secondary, and tertiary chordae tendineae appear to develop in the same manner. First order chordae (those attached at the free margin of a cusp) are not found in the chick embryo. The majority of the chordae are second order, which insert into the ventricular surface of the cusp a short distance from the free edge. These chordae typically have a horizontal banding or grooving along their length. Third order chordae which extend from the papillary muscle to the ventricular wall are also present. It is suggested that chordal development is a programmed cellular and hemodynamic event.[Abstract] [Full Text] [Related] [New Search]