These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Coronary circulation in asymmetrical hypertrophy of the interventricular septum. On a new pathogenic hypothesis].
    Author: Sánchez G, Orea A, Trevethan S, Martínez Ríos MA.
    Journal: Arch Inst Cardiol Mex; 1984; 54(3):235-44. PubMed ID: 6540552.
    Abstract:
    Thirty-four patients with left ventricular hypertrophy were studied. In all cases the following parameters were analyzed: 1) Echocardiography:left ventricular diastolic and systolic diameters, ejection fraction, thickness and movement of interventricular septum and posterior wall of the left ventricle (LV) 2) Electrocardiography: R wave voltaje in precordial leads V2, V3 and V5 and electrical axis in frontal plane 3) Catheterization: intracavitary pressures in LV and aortic pressures 4) Left ventriculography: areas of altered contractility 5) Coronariography: distribution pattern of coronary arteries and number of first order branches of circumflex (CA) and anterior descending coronary arteries (ADCA). The population was divided into 2 groups. Group A (GA) was made up of 22 patients with concentric hypertrophy (CH) of the LV (15 with systemic hypertensive heart disease, 6 with aortic valvular stenosis and 1 idiopathic). Echocardiographic findings included posterior wall thickness (PWT) or septal thickness of 1.1. cm or more and interventricular septum-posterior wall thickness ratio (S/PW) of less than 1.3. Group B (GB) included 12 patients with asymmetric septal hypertrophy (ASH), idiopathic in 5, systemic hypertensive heart disease in 4 and aortic valvular stenosis in 3. In these patients the S/PW thickness ratio was greater than 1.3 and the thickness of either wall greater than 1.1. cm. When the data of the two groups were compared there were significant differences in relation to the presence of septal hypertrophy. The R wave voltage in V2, interventricular thickness and S/PW were greater in GB. In addition, septal movement was less in GB than in Group A (0.47 +/- 0.26 cm vs. 0.74 +/- 0.37 cm; P less than 0.05). PWT was also less in Group B than in A (B: 1.01 +/- 0.1 cm, A: 1.2 +/- 0.2 cm; P less than 0.001). The CA in Group B divided into fewer than 4 first order branches to the upper two thirds of the posterior and lateral walls of the LV in 91.6%. This distribution of circumflex branches was found in 31.8% of the patients in Group A (P less than 0.05). In Group B, the ADCA divided into septal branches with no more than 2 diagonal branches. The posterior descending artery dominated septal distribution in 100% of these cases (GA: 31.8%; P less than 0.05). The sum of the first order branches of the CA and the ADCA was 5.6 +/- 0.9 in Group A and 2.7 +/- 0.9 branches in Group B (P less than 0.01).(ABSTRACT TRUNCATED AT 400 WORDS)
    [Abstract] [Full Text] [Related] [New Search]