These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enzymatic heme oxygenase activity in soluble extracts of the unicellular red alga, Cyanidium caldarium. Author: Beale SI, Cornejo J. Journal: Arch Biochem Biophys; 1984 Dec; 235(2):371-84. PubMed ID: 6549121. Abstract: Extracts of the phycocyanin-containing unicellular red alga, Cyanidium caldarium, catalyzed enzymatic cleavage of the heme macrocycle to form the linear tetrapyrrole bilin structure. This is the key first step in the branch of the tetrapyrrole biosynthetic pathway leading to phycobilin photosynthetic accessory pigments. A mixed-function oxidase mechanism, similar to the biliverdin-forming reaction catalyzed by animal cell-derived microsomal heme oxygenase, was indicated by requirements for O2 and a reduced pyridine nucleotide. To avoid enzymatic conversion of the bilin product to phycocyanobilins and subsequent degradation during incubation, mesoheme IX was substituted for the normal physiological substrate, protoheme IX. Mesobiliverdin IX alpha was identified as the primary incubation product by comparative reverse-phase high-pressure liquid chromatography and absorption spectrophotometry. The enzymatic nature of the reaction was indicated by the requirement for cell extract, absence of activity in boiled cell extract, high specificity for NADPH as cosubstrate, formation of the physiologically relevant IX alpha bilin isomer, and over 75% inhibition by 1 microM Sn-protoporphyrin, which has been reported to be a competitive inhibitor of animal microsomal heme oxygenase. On the other hand, coupled oxidation of mesoheme, catalyzed by ascorbate plus pyridine or myoglobin, yielded a mixture of ring-opening mesobiliverdin IX isomers, was not inhibited by Sn-protoporphyrin, and could not use NADPH as the reductant. Unlike the animal microsomal heme oxygenase, the algal reaction appeared to be catalyzed by a soluble enzyme that was not sedimentable by centrifugation for 1 h at 200,000g. Although NADPH was the preferred reductant, small amounts of activity were obtained with NADH or ascorbate. A portion of the activity was retained after gel filtration of the cell extract to remove low-molecular-weight components. Considerable stimulation of activity, particularly in preparations that had been subjected to gel filtration, was obtained by addition of ascorbate to the incubation mixture containing NADPH. The results indicate that C. caldarium possesses a true heme oxygenase system, with properties somewhat different from that catalyzing heme degradation in animals. Taken together with previous results indicating that biliverdin is a precursor to phycocyanobilin, the results suggest that algal heme oxygenase is a component of the phycobilin biosynthetic pathway.[Abstract] [Full Text] [Related] [New Search]