These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dependence of HL-60 myeloid cell differentiation on continuous and split retinoic acid exposures: precommitment memory associated with altered nuclear structure.
    Author: Yen A, Reece SL, Albright KL.
    Journal: J Cell Physiol; 1984 Mar; 118(3):277-86. PubMed ID: 6583206.
    Abstract:
    The cell differentiation of HL-60 human leukemic promyelocytes along the myeloid pathway due to various continuous and distributed exposures to retinoic acid was studied. HL-60 myeloid differentiation was a continuously driven process; significant terminal cell differentiation occurred only after a minimum exposure to inducer of two division cycles. Cells so committed to differentiation retained a heritable, finite memory of differentiation commitment over a further division cycle. Prior to becoming committed, cells acquired precommitment memory of exposure to inducer. Precommitment memory abbreviated the subsequent exposure to inducer needed for commitment to differentiation. Precommitment memory was semistable. It was heritable, but was lost after four division cycles. The acquisition and loss of precommitment memory correlated with alterations in nuclear architecture detected by narrow angle light scatter using flow cytometry. The altered nuclear architecture first occurred before any overt cell differentiation or growth arrest. It was thus an early event in the induced program of terminal cell differentiation. Alterations in relative abundances of cytoplasmic proteins also occurred prior to overt cell differentiation or growth arrest. One of these was a 17 kdalton, anionic, probably Ca2+ binding, protein. Retinoic acid thus induced early cellular changes, including cytoplasmic and nuclear alterations, within one cell cycle when cell differentiation was not yet apparent.
    [Abstract] [Full Text] [Related] [New Search]