These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Differentiation of macrophages from normal human bone marrow in liquid culture. Electron microscopy and cytochemistry. Author: Bainton DR, Golde DW. Journal: J Clin Invest; 1978 Jun; 61(6):1555-69. PubMed ID: 659615. Abstract: To study the various stages of human mononuclear phagocyte maturation, we cultivated bone marrow in an in vitro diffusion chamber with the cells growing in suspension and upon a dialysis membrane. At 2, 7, and 14 days, the cultured cells were examined by electron microscopy and cytochemical techniques for peroxidase and for more limited analysis of acid phosphatase and arylsulfatase. Peroxidase was being synthesized in promonocytes of 2- and 7-day cultures, as evidenced by reaction product in the rough-surfaced endoplasmic reticulum, Golgi complex, and storage granules. Peroxidase synthesis had ceased in monocytes and the enzyme appeared only in some granules. By 7 days, large macrophages predominated, containing numerous peroxidase-positive storage granules, and heterophagy of dying cells was evident. By 14 days, the most prevalent cell type was the large peroxidase-negative macrophage. Thus, peroxidase is present in high concentrations in immature cells but absent at later stages, presumably a result of degranulation of peroxidase-positive storage granules. Clusters of peroxidase-negative macrophages with indistinct borders (epithelioid cells), as well as obvious multinucleated giant cells, were noted. Frequently, the interdigitating plasma membranes of neighboring macrophages showed a modification resembling a septate junction--to our knowledge, representing the first documentation of this specialized cell contact between normal macrophages. We suggest that such junctions may serve as zones of adhesion between epithelioid cells.[Abstract] [Full Text] [Related] [New Search]