These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat.
    Author: Raczkowski D, Rosenquist AC.
    Journal: J Neurosci; 1983 Oct; 3(10):1912-42. PubMed ID: 6619917.
    Abstract:
    The present report describes the patterns of cat thalamocortical interconnections for each of the 13 retinotopically ordered visual areas and additional visual areas for which no retinotopy has yet emerged. Small injections (75 nl) of a mixture of horseradish peroxidase and [3H]leucine were made through a recording pipette at cortical injection sites identified by retinotopic mapping. The patterns of thalamic label show that the lateral posterior-pulvinar complex of the cat is divided into three distinct functional zones, each of which contains a representation of the visual hemifield and shows unique afferent and efferent connectivity patterns. The pulvinar nucleus projects to areas 19, 20a, 20b, 21a, 21b, 5, 7, the splenial visual area, and the cingulate gyrus. The lateral division of the lateral posterior nucleus projects to areas 17, 18, 19, 20a, 20b, 21a, 21b, and the anterior medial (AMLS), posterior medial (PMLS), and ventral (VLS) lateral suprasylvian areas. The medial division of the lateral posterior nucleus projects to areas AMLS, PMLS, VLS, and the anterior lateral (ALLS), posterior lateral (PLLS), dorsal (DLS) lateral suprasylvian areas, and the posterior suprasylvian areas. In addition, many of these visual areas are also interconnected with subdivisions of the dorsal lateral geniculate nucleus (LGd). Every retinotopically ordered cortical area (except ALLS and AMLS) is reciprocally interconnected with the parvocellular C layers of the LGd. The medial intralaminar nucleus of the LGd projects to areas 17, 18, 19, AMLS, and PMLS. Finally, each cortical area (except area 17) receives a projection from thalamic intralaminar nuclei. These results help to define the pathways by which visual information gains access to the vast system of extrastriate cortex in the cat.
    [Abstract] [Full Text] [Related] [New Search]