These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differentiation of enzyme and substrate binding in the prothrombinase complex.
    Author: Tucker MM, Nesheim ME, Mann KG.
    Journal: Biochemistry; 1983 Sep 13; 22(19):4540-6. PubMed ID: 6626514.
    Abstract:
    The Ca2+ dependence of factor Xa binding to phospholipid vesicles was measured in the presence and absence of factor Va. The increase in polarization of a fluorescently labeled derivative of factor Xa, [5-(dimethylamino)-1-naphthalenesulfonyl] glutamylglycylarginyl factor Xa (Dns-EGR-Xa), was used as a probe to measure the interaction of factor Xa with phospholipid. The Ca2+ concentration required for half-maximal binding of Dns-EGR-Xa to phospholipid vesicles was 3.5 X 10(-4) M in the presence of factor Va and 9.5 X 10(-4) M in the absence of factor Va. At a Ca2+ concentration of 5 X 10(-4) M, the binding of Dns-EGR-Xa to phospholipid-bound factor Va was near maximal, whereas there was no detectable interaction of Dns-EGR-Xa with phospholipid alone at this Ca2+ concentration as detected by fluorescence polarization. These results were qualitatively confirmed by high-performance liquid chromatography. The rate of hydrolysis of the factor Xa synthetic substrate, benzoylisoleucylglutamylglycylarginine p-nitroanilide, by factor Xa in the presence of factor Va and phospholipid decreased in a Ca2+-dependent manner. These data were analyzed as fraction of factor Xa bound to the phospholipid. A Ca2+ concentration of 2.7 X 10(-4) M resulted in half-maximal binding by this technique. The relationship observed between rates of prothrombin activation and Ca2+ concentration could be predicted quantitatively from calculations of local enzyme and substrate concentrations.
    [Abstract] [Full Text] [Related] [New Search]