These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Uptake of acetate and propionate by isolated nerve endings from the electric organ of Torpedo marmorata and their incorporation into choline esters.
    Author: O'Regan S.
    Journal: J Neurochem; 1983 Dec; 41(6):1596-601. PubMed ID: 6644301.
    Abstract:
    The uptake and incorporation into choline esters of acetate and propionate by electric organ synaptosomes were compared, with the aim of better understanding the basis for the selectivity of choline ester synthesis shown by this tissue for acetate. It was found that propionate uptake, like acetate uptake, was a temperature-dependent, saturable process. Both uptake mechanisms had similar affinities for their substrates, but the maximal velocity of propionate uptake was considerably lower than that of acetate uptake; and less of the accumulated propionate was used for choline ester synthesis than of the accumulated acetate. While acetate was a good inhibitor of propionate uptake, propionate was a very poor inhibitor of acetate uptake. This finding, in addition to the observation that the two uptakes were not affected in the same way by changes in pH, led to the suggestion that acetate uptake and propionate uptake reflect different processes. In both cases, however, the pH dependence of uptake indicated that these substrates cross the membrane as the charged species. Acetate uptake and acetylcholine synthesis remained closely associated under various experimental conditions, while propionate uptake could be dissociated from the synthesis of propionylcholine. Hence, it appears that acetate is taken up by a specific, high-velocity mechanism linked to acetylcholine synthesis, whereas propionate uptake may represent a less specific mechanism.
    [Abstract] [Full Text] [Related] [New Search]