These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Observations on the role of smooth endoplasmic reticulumin glucocorticoid-induced hepatic glycogen deposition. Author: Jerome WG, Cardell RR. Journal: Tissue Cell; 1983; 15(5):711-27. PubMed ID: 6648953. Abstract: We have studied by quantitative electron microscopy the relationship of specific hepatic cellular organelles to glycogen synthesis using dexamethasone, a potent synthetic glucocorticoid, to induce glycogen deposition in livers of adrenalectomized rats. Chemical and ultrastructural glycogen determinations revealed that the livers of fasted adrenalectomized rats had very low glycogen levels. Dexamethasone caused a time-related increase in hepatic glycogen which was the result of increases in the number of hepatocytes depositing glycogen and the amount of glycogen in each cell. The surface density of smooth endoplasmic reticulum (SER) in centrilobular and periportal hepatocytes also increased after treatment with dexamethasone; this increase preceded glycogen deposition. The newly deposited glycogen was spatially associated with membranes of SER, and a continued increase in SER surface density was correlated temporally with the increasing glycogen volume density. In both centrilobular and periportal hepatocytes, the surface density of rough endoplasmic reticulum (RER) initially decreased after dexamethasone administration but later increased. These data support the hypothesis that dexamethasone-induced enhancement of SER is functionally associated with the increase in glycogen, and that although the initial increase in SER may occur through transformation of RER to SER, later increases in SER require synthesis of new membranes.[Abstract] [Full Text] [Related] [New Search]