These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: [Morphological characteristics of various segments of local connections in the rat somatosensory cortex].
    Author: Ponomareva EV.
    Journal: Arkh Anat Gistol Embriol; 1983 Oct; 85(10):24-30. PubMed ID: 6661045.
    Abstract:
    Pyramidal, aspinous, sparsely-spinous bipolar and multipolar neurons of the rat sensomotor cerebral cortex, impregnated after Golgi method, have been studied at an electron microscopical level. The ultrastructural characteristics of the pyramidal neurons differs from that of the nonpyramidal cells. Distribution of various synaptic contacts on the cellular surface and cortical postsynaptic targets of the axonal arborizations of the neurons are revealed. On the body of the pyramidal cells only symmetrical synapses exist, on large dendritic trunks symmetrical synapses prevail, on the spines and the terminal dendritic branches assymetrical synapses mainly predominate. Axonal collateralies of the pyramidal cells form asymmetrical synapses on the spines, small and middle dendrites. There are more axo-somatic synapses on the bodies of the nonpyramidal neurons than on the pyramidal cells, among them both symmetrical and asymmetrical types of the synapses occur. On the trunks and small dendrites of the nonpyramidal cells both types of synaptic contacts are revealed. In the distal direction of the dendrites the number of the asymmetrical synapses becomes predominating. Axons of the bipolar cells form asymmetrical synapses on the spines, small and middle dendrites. Axons of the multipolar cells form symmetrical synapses on the dendrites and the dendritic trunks of the nondifferentiated cells. Differences in the distribution character of the synaptic inlets and various postsynaptic targets of the axonal systems in the cells assume various functional role of the identified neurons.
    [Abstract] [Full Text] [Related] [New Search]