These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Flow investigations in a model of a three-dimensional human artery with Newtonian and non-Newtonian fluids. Part I. Author: Moravec S, Liepsch D. Journal: Biorheology; 1983; 20(6):745-59. PubMed ID: 6661526. Abstract: Together with biochemical factors, fluid mechanical factors play a role in atherogenesis and the deposition of blood platelets at bends and bifurcations in human arteries. Hence, flow patterns were investigated in a simplified 3-dimensional model of a human renal artery bifurcation using Newtonian (aqueous glycerol) and non-Newtonian (aqueous solution of polyacrylamide) fluids. Studies were carried out in steady as well as pulsatile flow at inflow Reynolds numbers of 498 and 951 with flow rate ratios main tube V1: right branch V4: left branch V3 of 1: 0.25: 0.25 and 1: 0.18: 0.18 respectively. The velocity distribution proximal and distal to the bifurcations was measured using a laser-Doppler anemometer. In steady flow, zones of flow separation and reverse flow were observed distal to the bifurcations. In pulsatile flow using non-Newtonian fluids, there was a significant enlargement of these zones. Differences between the Newtonian and non-Newtonian fluids occurred especially distal to the bifurcations. Shear stresses along all measuring positions were computed from the velocity gradients.[Abstract] [Full Text] [Related] [New Search]