These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interactions of cooling rate, warming rate, glycerol concentration, and dilution procedure on the viability of frozen-thawed human granulocytes. Author: Frim J, Mazur P. Journal: Cryobiology; 1983 Dec; 20(6):657-76. PubMed ID: 6661915. Abstract: Difficulties in the successful freezing of human granulocytes could lie at two levels. One is that critical cryobiological variables have not yet been identified, the other is that the inconsistent results may be due to unusual biological aspects of the cell. This paper is concerned with the former. A prerequisite for the successful freezing of mammalian cells is the ability of the cell to tolerate cryoprotective levels of additive. The additive studied here was glycerol. Based on fluorescent staining with fluorescein diacetate, we found that 1 and 2 M concentrations are in fact chemically toxic at 22 degrees C. Superimposed on this toxicity is some osmotic sensitivity to the removal of the additive by other than slow dilution. The dilution procedure was selected on the basis of computer modeling of the osmotic response of the cells. The model requires a value for the permeability coefficient for glycerol. The value (4 X 10(-5) cm/min) was obtained by measuring the rate of increase of the volume of cells in hyperosmotic glycerol. The response of human granulocytes to freezing to -196 degrees C and thawing in 1 or 2 M glycerol was not unusual. The optimum cooling rate was 1-3 degrees C/min, and cooling at 10 degrees C/min or faster was especially deleterious if warming was slow (1 degree C/min) rather than rapid (188 degrees C/min). The FDA assay showed that some 75% of the cells survived freezing and thawing at optimum rates in 1 or 2 M glycerol; and some 50-60% remained viable after the glycerol had been removed, provided that the cells remained at 0 degrees C. However, granulocytes normally function at 37 degrees C. Because chemotaxis is considered a good assay of normal function, we developed a modified procedure capable of discriminating among random migration, enhanced random migration (chemokinesis), and directed cell migration (true chemotaxis). When frozen-thawed-diluted cells were incubated for 60 min at 37 degrees C, their survival, based both on the FDA assay and on the chemotaxis assay, was zero. In fact, a prior exposure of the cells to 2 M glycerol at 0 degrees C, even in the absence of freezing, resulted in a rapid loss in FDA viability when the cells were subsequently held at 37 degrees C for up to 60 min. Survivals based on FDA are usually reported to be considerably higher than survivals based on functional assays such as chemotaxis or phagocytosis.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]