These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Barrier properties of glycophorin-phospholipid systems prepared by different methods.
    Author: Van der Steen AT, Taraschi TF, Voorhout WF, De Kruijff B.
    Journal: Biochim Biophys Acta; 1983 Aug 24; 733(1):51-64. PubMed ID: 6688359.
    Abstract:
    Glycophorin was incorporated into large unilamellar dioleoylphosphatidylcholine vesicles by either a detergent dialysis method using octylglucoside or a method avoiding the use of detergents. The vesicles were characterized and the permeability properties and transbilayer movement of lipids in both vesicles were investigated as a function of the protein concentration and were compared to protein-free vesicles. An insight in the permeability properties of the vesicles was obtained by monitoring the ratio potassium (permeant): dextran (impermeant) trap immediately after separation of the vesicles from the external medium. Glycophorin incorporated without the use of detergents in 1:300 protein:lipid molar ratio induces a high potassium permeability for the majority of the vesicles as judged from the low potassium trap (K+:dextran trap = 0.21). In contrast, the vesicles in which glycophorin is incorporated via the octylglucoside method (1:500 protein:lipid molar ratio) are much less permeable to potassium (K+:dextran trap = 0.67 and t12 of potassium efflux at 22 degrees C is 7.5 h.). The relationship between protein-induced bilayer permeability and lipid transbilayer movement in both vesicle preparations is discussed. Addition of wheat-germ agglutinin to glycophorin-containing vesicles comprised of dioleoylphosphatidylcholine and total erythrocyte lipids caused no or just a small effect (less than 20% release of potassium) on the potassium permeability of these vesicles. Also, addition of lectin to dioleoylphosphatidylethanolamine-glycophorin bilayer vesicles in a 25:1 lipid:glycophorin molar ratio had no effect on the permeability characteristics of the vesicles. In contrast, addition of wheat-germ agglutinin to bilayer vesicles made of dioleoylphosphatidylethanolamine and glycophorin in a 200:1 molar ratio resulted in a release of 74% of the enclosed potassium by triggering a bilayer to hexagonal (HII) phase transition. The role of protein aggregation and the formation of defects in the lipid bilayer on membrane permeability and lipid transbilayer movement is discussed.
    [Abstract] [Full Text] [Related] [New Search]