These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Neural crest cell behavior in white and dark larvae of Ambystoma mexicanum: time-lapse cinemicrographic analysis of pigment cell movement in vivo and in culture.
    Author: Keller RE, Spieth J.
    Journal: J Exp Zool; 1984 Jan; 229(1):109-26. PubMed ID: 6699589.
    Abstract:
    The pattern of migration and motile activity of developing pigment cells of the Mexican axolotl, Ambystoma mexicanum, were analyzed by time-lapse cinemicrography in vivo and in culture. In vivo, melanocytes of dark (D/-) larvae migrate from dorsal to ventral in a highly directional manner. They are elongated and aligned parallel to the direction of migration. Nearly all protrusive activity occurs at their ventral, leading edges. Translocation occurs at a mean rate of 0.7 micron/min and involves alternate or simultaneous advance of the leading and trailing edges of the cell. Indirect evidence suggests that cytoplasmic flow is common. Directional migration occurs in apparent absence of contact between melanocytes. In white (d/d) larvae, protrusive activity is infrequent and the melanocytes move slowly or not at all. Explanted neural crest cells of dark and white larvae attach, spread, and differentiate into melanophores and xanthophores in culture. Individual cultured cells are unbiased in direction of protrusive activity and path of migration. Centrifugal spreading occurs by contacting inhibition of movement. Distribution of protrusive activity, polarity, and contact behavior changes with developmental age in vivo and in culture in ways that may be important in establishing the pigment pattern.
    [Abstract] [Full Text] [Related] [New Search]