These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Synthesis and biological activity of nucleosides and nucleotides related to the antitumor agent 2-beta-D-ribofuranosylthiazole-4-carboxamide. Author: Srivastava PC, Revankar GR, Robins RK. Journal: J Med Chem; 1984 Mar; 27(3):266-9. PubMed ID: 6699872. Abstract: Phosphorylation of 2-beta-D-ribofuranosylthiazole-4-carboxamide (1) provided the 5'-phosphate 2, which was converted to the corresponding 5'-triphosphate 4 and the cyclic 3',5'-phosphate 5. Treatment of 2-(2,3,5-tri-O-acetyl-beta-D-ribofuranosyl)thiazole-4-carbonitrile (6) with NH3-NH4Cl provided 2-beta-D-ribofuranosylthiazole-4-carboxamidine hydrochloride (7), and treatment with H2S-pyridine provided the corresponding 4-thiocarboxamide 9. Compound 9 was treated with ethyl bromopyruvate, followed by treatment with methanolic ammonia, to yield 2'-(2-beta-D-ribofuranosylthiazol-4-yl)thiazole-4'-carboxamide (11). 5'-Phosphate 2 was cytotoxic to L1210 cells in culture and significantly effective against the intraperitoneally implanted murine leukemias in mice. Amidine 7 was slightly toxic to L1210 in culture and inhibitory to purine nucleoside phosphorolysis. The cyclic 3',5'-phosphate 5 was less effective than the corresponding 5'-phosphate 2 or the parent nucleoside 1 as an antitumor agent.[Abstract] [Full Text] [Related] [New Search]