These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phosphorylation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by microsomal 3-hydroxy-3-methylglutaryl coenzyme A reductase kinase. Author: Ferrer A, Hegardt FG. Journal: Arch Biochem Biophys; 1984 Apr; 230(1):227-37. PubMed ID: 6712234. Abstract: Microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase has been purified to apparent homogeneity by a process involving the following steps: solubilization from microsomes and chromatography on Affi-Gel Blue, phosphocellulose, Bio-Gel A 1.5m, and agarose-hexane-ATP. The apparent Mr of the purified enzyme as judged by gel-filtration chromatography is 205,000 and by sodium dodecyl sulfate-gel electrophoresis is 105,000. Immunoprecipitation of homogeneous reductase phosphorylated by reductase kinase and [gamma-32P]ATP produces a unique band containing 32P bound to protein which migrates at the same Rf as the reductase subunit. Incubation of 32P-labeled HMG-CoA reductase with reductase phosphatase results in a time-dependent loss of protein-bound 32P radioactivity, as well as an increase in enzymic activity. Reductase kinase, when incubated with ATP, undergoes autophosphorylation, and a simultaneous increase in its enzymatic activity is observed. Tryptic treatment of immunoprecipitated, 32P-labeled HMG-CoA reductase phosphorylated with reductase kinase produces only one 32P-labeled phosphopeptide with the same Rf as one of the two tryptic phosphopeptides that have been reported in a previous paper. The possible existence of a second microsomal reductase kinase is discussed.[Abstract] [Full Text] [Related] [New Search]