These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Influence of vitamin E and selenium on glutathione-dependent protection against microsomal lipid peroxidation.
    Author: Hill KE, Burk RF.
    Journal: Biochem Pharmacol; 1984 Apr 01; 33(7):1065-8. PubMed ID: 6712716.
    Abstract:
    A GSH-dependent microsomal protein which inhibits lipid peroxidation has been described [R. F. Burk, Biochim. biophys. Acta 757, 21 (1983)]. Studies of its mechanism indicate that it scavenges free radicals. Vitamin E (alpha-tocopherol) and selenium are micronutrients which protect against lipid peroxidation. The effect of nutritional deficiencies of these substances on the GSH-dependent protection against rat liver microsomal lipid peroxidation was studied to determine whether GSH, selenium and alpha-tocopherol function through separate or shared mechanisms. In the ascorbate-iron microsomal lipid peroxidation system, there is a 1-3 min lag phase before lipid peroxidation begins. The length of the lag correlated well (r = 0.87) with the microsomal alpha-tocopherol content as measured by high pressure liquid chromatography. Thus, the selenium-deficient microsomes, which had a shorter lag than controls, had a somewhat lower alpha-tocopherol content. The vitamin E-deficient microsomes, which had no detectable alpha-tocopherol, had the shortest lag, but a distinct lag was present. Addition of 0.1 mM GSH to control microsomes prolonged the lag by 270%. In selenium-deficient and vitamin E-deficient microsomes, which had shorter initial lags, GSH addition caused 345 and 280% increases respectively. This suggests that the function of the GSH-dependent protective mechanism is unimpaired in these deficiencies. Trypsin digestion of microsomes, which abolished the lag completely and destroyed the GSH-dependent protection, had no effect on microsomal alpha-tocopherol content, however. These experiments illustrate the importance of two defenses against microsomal lipid peroxidation: the GSH-dependent protein which is responsible for the existence of the lag, and alpha-tocopherol which affects the length of the lag. They suggest that these defenses function separately to prevent peroxidation of membrane polyunsaturated fatty acids. Selenium appears to affect microsomal alpha-tocopherol content but to have no other effect on the microsomal lipid peroxidation system.
    [Abstract] [Full Text] [Related] [New Search]