These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Modulation of the kinetics and the steady-state level of intermediates of mitochondrial coupled reactions by inhibitors and uncouplers.
    Author: Yagi T, Matsuno-Yagi A, Vik SB, Hatefi Y.
    Journal: Biochemistry; 1984 Feb 28; 23(5):1029-36. PubMed ID: 6712922.
    Abstract:
    In oxidative phosphorylation and ATP-driven uphill electron transfer from succinate to NAD, double-reciprocal plots of rates vs. substrate concentrations of the energy-driven reactions are a family of parallel lines at several fixed subsaturating concentrations of the substrates or at several moderate concentrations of the inhibitors of the energy-yielding reactions. Thus, as shown elsewhere [Hatefi, Y., Yagi, T., Phelps, D. C., Wong, S.-Y., Vik, S. B., & Galante, Y. M. (1982) Proc. Natl. Acad. Sci. U.S.A. 79, 1756-1760], partial uncoupling decreases the Vappmax and increases the Kappm of the substrates of the energy-driven reactions, resulting in a decrease of Vmax/Km as a function of increased uncoupling. However, partial limitation of the flow rates of the energy-yielding reactions decreases both the Vappmax and the Kappm of the substrates of the energy-driven reactions, resulting in no change in Vmax/Km. This is true as long as the rate limitation is moderate (e.g., less than 60%), under which conditions the steady-state membrane potential (delta psi) remains essentially unchanged. At high inhibition of the energy-yielding reactions, or at moderate inhibition in the presence of low levels of an uncoupler to cause partial uncoupling, then the family of double-reciprocal plots is no longer parallel and tends to converge toward the left. Under these conditions, steady-state delta psi and Vmax/Km also decrease as inhibition is increased. The relationship between the magnitude of steady-state delta psi and the rate of the energy-driven reaction was studied in oxidative phosphorylation, ATP-driven electron transfer from succinate to NAD, and respiration-driven uniport calcium transport by intact mitochondria.(ABSTRACT TRUNCATED AT 250 WORDS)
    [Abstract] [Full Text] [Related] [New Search]