These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genetic studies of leucine transport in mammalian cells.
    Author: Shotwell MA, Lobatón CD, Collarini EJ, Moreno A, Giles RE, Oxender DL.
    Journal: Fed Proc; 1984 May 15; 43(8):2269-72. PubMed ID: 6714434.
    Abstract:
    We have taken two approaches to the study of the genetics of leucine transport in mammalian cells. First, from a mutant Chinese hamster ovary cell line that has a temperature-sensitive leucyl-tRNA synthetase, we isolated temperature-resistant revertants with increased leucine transport activity. This transport elevation is reflected by increased Vmax values of leucine uptake and unchanged Km values of uptake. The temperature resistance in each revertant appears to result from the increased transport and not from any change in the leucyl-tRNA synthetase. We conclude that in each revertant there is a stable derepression of amino acid transport system L. In a second approach, we started with a Chinese hamster-human hybrid strain formed by the fusion of a temperature-sensitive leucyl-tRNA synthetase mutant hamster cell line and normal human leukocytes. From this temperature-sensitive hybrid strain we selected temperature-resistant hybrids, one class of which we found to have greatly elevated leucine transport activity. We have allowed human chromosomes to segregate from these high-transport hybrids, promoted by the presence of low concentrations of colcemid. The loss of the high-transport phenotype coincides with the loss of a single small human chromosome, which we are attempting to identify by using G-11 and G-banding staining techniques.
    [Abstract] [Full Text] [Related] [New Search]