These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temperature-dependent modulation of [3H]nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes.
    Author: Boles RG, Yamamura HI, Schoemaker H, Roeske WR.
    Journal: J Pharmacol Exp Ther; 1984 May; 229(2):333-9. PubMed ID: 6716261.
    Abstract:
    Binding of the dihydropyridine calcium channel antagonist [3H]nitrendipine to an intact rat brain mitochondrial-synaptosomal fraction (P2) was specific, saturable, temperature-dependent and of high affinity (Kd = 115-467 pM). The effects of the calcium channel antagonists verapamil and diltiazem on [3H]nitrendipine binding and their temperature dependence were investigated. At 0 and 25 degrees C, verapamil inhibited [3H]nitrendipine binding incompletely in a manner consistent with an allosteric modulation and nearly independent of the incubation temperature. The effects of diltiazem, however, were found to be highly temperature-dependent. At 25 and 37 degrees C, 10 microM diltiazem enhanced [3H]nitrendipine binding to values of 140 and 200% of control, respectively. At 0 degrees C, 10 microM diltiazem inhibited [3H]nitrendipine binding to a value of 68% of control. Analysis of saturation isotherms at steady state demonstrated that at all temperatures studied the effects of verapamil and diltiazem on [3H]nitrendipine binding were due to alterations in the ligand dissociation constant (Kd). At 25 degrees C, these alterations were mediated by changes in the rate of ligand-receptor complex dissociation. Competition studies of verapamil and diltiazem at 25 and 0 degrees C indicate that the effects of these two drugs on [3H]nitrendipine binding are mutually exclusive. We conclude that the binding of [3H]nitrendipine is allosterically modulated by spacially related binding sites for verapamil and diltiazem.
    [Abstract] [Full Text] [Related] [New Search]