These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Current-induced volume flow across bovine tracheal epithelium: evidence for sodium-water coupling.
    Author: Durand J, Durand-Arczynska W, Vulliemin P.
    Journal: J Physiol; 1984 Mar; 348():19-34. PubMed ID: 6716283.
    Abstract:
    The passage of a constant current from lumen to serosa (Il-s), in the range 0.5-2.0 mA, across ouabain-treated bovine tracheal epithelium, induced a stable volume flow (Jv) toward the serosa, proportional to the current. No consistent Jv occurred when current was applied from serosa to lumen. When the standard K+ (6 mM) in the bathing solution was omitted or replaced by choline, Jv was in the same direction as, and proportional to, the current, both with Is-l and with Il-s. The electro-osmotic permeability beta was in the range of 10-15 microl h-1 cm-2 mA-1, i.e. 3-4 X 10(-6) cm s-1 mA-1. The fluxes of Na+, Cl- and mannitol were measured in current-clamp (1 mA, passed from serosa to lumen or lumen to serosa) or voltage-clamp (-20, 0 and +20 mV) conditions, with and without K+. Net transepithelial Na+ fluxes toward the cathode were either smaller than (with Is-l) or equal to (with Il-s) the net fluxes of Cl- toward the anode. The total transepithelial conductance (Gt) increased with the applied electrical gradient, both with Is-l and with Il-s, the change in Gt being larger with Il-s than with Is-l. This increase of Gt was less pronounced when K+ was omitted. The analyses of partial ionic conductances (GNa and GCl) and of the flux ratios indicate the existence of non-conductive diffusion for Cl- and also for Na+. The direction of the electrical gradient influenced the permeability ratio PNa/PCl. With Is-l, PNa/PCl was consistently lower than 0.7, i.e. the mobility ratio of Na+ and Cl- in solution. With Il-s, PNa/PCl was closer to 0.7. The highest Cl- selectivity of the epithelium was observed with Is-l in the presence of K+, i.e. under conditions which failed to induce any conspicuous Jv. The passage of current at 1 mA induced a net flux of mannitol toward the cathode, i.e. in the same direction as Na+ net flux and Jv. However, this mannitol flux was significant only in the absence of K+. These results indicate that Jv was predominantly coupled to the migration of Na+ along the electrical gradient, through a paracellular pathway.
    [Abstract] [Full Text] [Related] [New Search]