These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: NADH- and oxygen-dependent multiple turnovers of cytochrome P-450-CAM without putidaredoxin and putidaredoxin reductase.
    Author: Eble KS, Dawson JH.
    Journal: Biochemistry; 1984 Apr 24; 23(9):2068-73. PubMed ID: 6722135.
    Abstract:
    Phenazine methosulfate (PMS) has been successfully used to mediate electron transfer from NADH to cytochrome P-450-CAM in the absence of putidaredoxin and putidaredoxin reductase under aerobic conditions. Identification and quantitation of exo-5- hydroxycamphor , the only product, has been accomplished by gas chromatography. In the absence of cytochrome P-450-CAM, or when other heme proteins (hemoglobin, myoglobin, horseradish peroxidase) are substituted for P-450-CAM, no exo-5- hydroxycamphor is detected. Product formation is not inhibited by the addition of catalase, superoxide dismutase, or hydroxyl radical scavengers; however, significant inhibition is observed with carbon monoxide and metyrapone, known inhibitors of the fully reconstituted P-450 system. Addition of 2,3-dimercaptopropanol to the NADH/PMS/P-450 system leads to a 4-fold increase in product formation; when putidaredoxin is added (without dimercaptopropanol), a 20-fold increase in product formation is observed. Constant bubbling with oxygen results in a further increase in the amount of product (150-fold increase overall). Our results show that PMS can substitute for the electron-transfer proteins putidaredoxin and putidaredoxin reductase in the transfer of electrons from NADH to P-450-CAM, resulting in multiple turnovers. Molecular oxygen dependent multiple turnovers of cytochrome P-450 have not been previously observed without the fully reconstituted, three-protein system.
    [Abstract] [Full Text] [Related] [New Search]