These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Auditory event-related potentials in the squirrel monkey: parallels to human late wave responses. Author: Neville HJ, Foote SL. Journal: Brain Res; 1984 Apr 23; 298(1):107-16. PubMed ID: 6722547. Abstract: Event-related potentials (ERPs) were recorded from the brain surface in squirrel monkeys during the presentation of two auditory stimulus paradigms which have previously been utilized to elicit scalp-recorded ERPs in humans. In the first paradigm, inter-stimulus interval (ISI) was systematically varied during the presentation of a series of tone pips. The tones produced a negative (70 ms)-positive (130 ms) sequence of components similar in morphology to the human scalp-recorded N1-P2 'vertex' potential. The amplitude of the N70 and P130 components recorded from midline electrodes decreased with decreasing ISI, as previously shown for the human vertex potential. However, this amplitude change with ISI was not observed in ERPs recorded from lateral frontal and temporal electrodes. These results agree with previous studies of monkeys and humans which suggest at least two different sources contribute to N1-P2 components recorded in response to tones. The effects of stimulus probability and novelty on ERP morphology and amplitude were studied in the second paradigm. ERPs elicited by frequent (P = 0.92) and infrequent (P = 0.08) tone pips presented in an unpredictable order were compared. N70 - P130 components were produced by both stimuli, and the infrequent stimuli also elicited a broad, long latency (300 ms) positive complex that decreased in amplitude with repeated presentations. In humans the same infrequent auditory stimuli produce a frontally distributed late positive component that has been interpreted as indicating the activation of orientation mechanisms or of a 'mismatch detector'. These data suggest that in these paradigms squirrel monkeys exhibit ERPs which are similar in several respects to ERPs recorded to identical stimuli in humans.[Abstract] [Full Text] [Related] [New Search]