These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolism of vitamin K and vitamin K 2,3-epoxide via interaction with a common disulfide.
    Author: Lee JJ, Fasco MJ.
    Journal: Biochemistry; 1984 May 08; 23(10):2246-52. PubMed ID: 6733086.
    Abstract:
    The effects of thiols and sulfhydryl blocking reagents on the reduction of vitamin K to vitamin K hydroquinone and vitamin K 2,3-epoxide to vitamin K and vitamin K hydroquinone catalyzed by rat hepatic microsomes were investigated to determine the mechanism(s) for these reactions. Both vitamin K and vitamin K 2,3-epoxide reductions were catalyzed more effectively with dithiols than with monothiols as the reductant. The sulfhydryl reagent N-ethylmaleimide (NEM) inhibited vitamin K and vitamin K 2,3-epoxide reduction much more effectively when microsomes were initially treated with dithiothreitol (prereduced). In prereduced microsomes iodoacetamide was approximately half as effective an inhibitor of vitamin K and vitamin K 2,3-epoxide reduction as NEM, but in microsomes not prereduced it was more effective. Iodoacetic acid was ineffective as an inhibitor. Vitamin K or vitamin K 2,3-epoxide added to prereduced microsomes blocked subsequent inhibition by NEM of vitamin K and vitamin K 2,3-epoxide metabolism, respectively. Vitamin K added to prereduced microsomes also blocked inhibition by NEM of vitamin K 2,3-epoxide metabolism, and vitamin K 2,3-epoxide addition blocked inhibition by NEM of vitamin K metabolism. Vitamin K did not diminish the rate of vitamin K 2,3-epoxide metabolism, however, nor did vitamin K 2,3-epoxide diminish the rate of vitamin K metabolism. These data establish that exogenous thiol compounds promote the reduction of at least one protein disulfide which participates in the metabolism of vitamin K and vitamin K 2,3-epoxide. Presumably, the resultant sulfhydryl groups are reoxidized to the disulfide form during the metabolism of either vitamin which protects them from reaction with NEM.
    [Abstract] [Full Text] [Related] [New Search]