These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Furosemide-sensitive potassium efflux in cultured mouse fibroblasts.
    Author: Jayme DW, Slayman CW, Adelberg EA.
    Journal: J Cell Physiol; 1984 Jul; 120(1):41-8. PubMed ID: 6736136.
    Abstract:
    Transfer of LM(TK-) cells from normal growth medium to medium lacking K+ leads to a rapid loss of intracellular K+, which is 50-70% inhibited by furosemide or bumetanide. The diuretic-sensitive component of K+ efflux requires both Na+ and Cl-, and is presumably mediated by a K+, Na+, Cl- cotransport system of the kind described in avian erythrocytes and Ehrlich ascites cells. It can be calculated that such a system should be near equilibrium under normal growth conditions but should mediate net efflux (as observed) when the driving force is altered by reducing extracellular K+. The diuretic-sensitive component of net K+ efflux is also sensitive to amiloride. This effect is probably indirect, however, with amiloride acting to block the Na+ influx that supplies Na+ to the cotransport system. At the low extracellular K+ concentrations employed in these studies, the diuretic-sensitive system is a physiologically important pathway of K+ loss. The rate of growth in low-K+ medium can be increased (or the rate of cell lysis decreased) by adding diuretic or by reducing external Na+ or Cl-.
    [Abstract] [Full Text] [Related] [New Search]