These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A fraction from extracts of demineralized adult bone stimulates the conversion of mesenchymal cells into chondrocytes.
    Author: Syftestad GT, Caplan AI.
    Journal: Dev Biol; 1984 Aug; 104(2):348-56. PubMed ID: 6745488.
    Abstract:
    Demineralized adult bone contains factors which stimulate nonskeletal mesenchymal cells to undergo a developmental progression resulting in de novo endochondral ossification. In this study, isolated embryonic stage 24 chick limb bud mesenchymal cells maintained in culture were utilized as an in vitro assay system for detection of specific bioactive components solubilized from adult chicken bone matrix. Guanidinium chloride extracts (4 M) of demineralized-defatted bone were fractionated and tested in limb mesenchymal cell cultures for possible effects upon growth and chondrogenesis. Two low-molecular-weight fractions were found to be active in these cultures. A cold water-insoluble, but warm Tris-buffered saline-soluble fraction provoked a dose-dependent increase in the amount of cartilage formed after 7 days of continuous exposure as evidenced by an increased number of chondrocytes observed in living cultures, elevated cell-layer-associated 35S incorporation per microgram DNA, and greater numbers of toluidine blue-staining foci (i.e., cartilage nodules). Growth inhibitory substances were detected in a low-molecular-weight, water-soluble fraction; 7 days of continuous exposure to this material resulted in less cartilage formation and reduced cell numbers (accumulated DNA) on each plate. These observations demonstrate the usefulness of stage 24 chick limb bud cell cultures for identifying bioactive factors extracted from adult bone matrix. In addition, the action of these factors on mesenchymal cells may now be studied in a cell culture system.
    [Abstract] [Full Text] [Related] [New Search]