These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of high- and low-intensity exercise training on aerobic capacity and blood lipids. Author: Gaesser GA, Rich RG. Journal: Med Sci Sports Exerc; 1984 Jun; 16(3):269-74. PubMed ID: 6748925. Abstract: Sixteen non-obese, non-smoking males, ages 20-30 yr, were assigned to one of two training groups, exercising on a cycle ergometer 3 d/wk for 18 wk: high-intensity (H; N = 7; 80-85% Vo2max, 25 min/session) or low-intensity (L; N = 9; 45% VO2max, 50/min/session). Data were obtained at 3-wk intervals for Vo2max, body weight, percent body fat, and 12-h fasting blood levels of cholesterol (CHOL), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C). The average post-training increase in VO2max for group H (0.56 l X min-1, 8.5 ml X min-1 X kg-1) was not significantly (P greater than 0.05) greater than for group L (0.45 l X min-1, 6.5 ml X min-1 X kg-1). Significant reductions in percent body fat occurred in both groups, amounting to an average fat loss of approximately 1.35 kg. No statistically significant changes in CHOL, TG, HDL-C, LDL-C, CHOL/HDL-C, or HDL-C/LDL-C occurred in either group. However, changes in HDL-C after 18 wk of training were inversely correlated (r = -0.57, P less than 0.05) with pre-training levels. We conclude that 1) the minimum exercise training-intensity threshold for improving aerobic capacity is at least 45% Vo2max; 2) 18 wk of high- or low-intensity exercise training is ineffective in significantly altering CHOL, TG, HDL-C, LDL-C, CHOL/HDL-C, and HDL-C/LDL-C in young male subjects with low blood lipid levels, and 3) exercise training-induced changes in HDL-C are dependent upon initial pre-training levels.[Abstract] [Full Text] [Related] [New Search]