These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effect of lung inflation on pulmonary vascular resistance by arterial and venous occlusion. Author: Hakim TS, Michel RP, Chang HK. Journal: J Appl Physiol Respir Environ Exerc Physiol; 1982 Nov; 53(5):1110-5. PubMed ID: 6757207. Abstract: To explain the changes in pulmonary vascular resistance (PVR) with positive- and negative-pressure inflation (PPI and NPI, respectively), we studied their effects in isolated canine left lower lobes perfused at constant flow rate. The venous pressure was kept constant relative to atmospheric pressure during lung inflation. The total arteriovenous pressure drop (delta Pt) was partitioned with the arterial and venous occlusion technique into pressure drops across arterial and venous segments (large indistensible extra-alveolar vessels) and a middle segment (small distensible extra-alveolar and alveolar vessels). PPI caused a curvilinear increase in delta Pt due to a large Starling resistance effect in the alveolar vessels associated with a small volume-dependent increase in the resistance of alveolar and extra-alveolar vessels. NPI caused an initial decrease in delta Pt due to reduction in the resistance of extra-alveolar vessels followed by an increase in delta Pt due to a volume-dependent increase in the resistance of all vessels. In conclusion, we provided for the first time evidence that lung inflation results in a volume-dependent increase in the resistance of both alveolar and extra-alveolar vessels. The data suggest that while the volume-related changes in PVR are identical with PPI and NPI, there are pressure-related changes that can be different between the two modes of inflation.[Abstract] [Full Text] [Related] [New Search]