These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction of glycogen phosphorylase with 8-azidoadenosine 5'-monophosphate, a photoaffinity analog of AMP. Author: Seery VL. Journal: Biochim Biophys Acta; 1980 Mar 14; 612(1):195-204. PubMed ID: 6767498. Abstract: The ability of 8-azidoadenosine 5'-monophosphate (N3AMP) to act as a photoaffinity label for the AMP binding site on glycogen phosphorylase (EC 2.4.1.1) was tested. 8-Azidoadenosine 5'-monophosphate can replace AMP as an allosteric modifier of both phosphorylases a and b; the pH optimum and the extent of activation are comparable to that observed with AMP. 8-Azidoadenosine 5'-monophosphate resembles the natural activator in having a higher affinity for phosphorylase a. The effects of 8-azidoadenosine 5'-monophosphate and AMP on phosphorylase b are additive when each is present at a concentration which gives less than 50% activation. Increasing the concentration of the substrate, glucose 1-phosphate, decreases the apparent activation constant (Ka) for the interaction of 8-azidoadenosine 5'-monophosphate with phosphorylase b. Glucose 6-phosphate is an inhibitor of phosphorylase b with either AMP or 8-azidoadenosine 5'-monophosphate. In the presence of ultraviolet light, 8-azidoadenosine 5'-monophosphate is irreversibly incorporated into phosphorylase a; incorporation at the allosteric site can be reduced if AMP is added prior to irradiation. Under the conditions used in the photolysis experiments, 3--5% of the available AMP sites were labeled with 8-azidoadenosine 5'-monophosphate. The data indicate the potential usefulness of 8-azidoadenosine 5'-monophosphate as a probe for the AMP site on phosphorylase.[Abstract] [Full Text] [Related] [New Search]