These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Mapping a cloned gene under sporulation control by inserttion of a drug resistance marker into the Bacillus subtilis chromosome.
    Author: Haldenwang WG, Banner CD, Ollington JF, Losick R, Hoch JA, O'Connor MB, Sonenshein AL.
    Journal: J Bacteriol; 1980 Apr; 142(1):90-8. PubMed ID: 6768719.
    Abstract:
    A segment of Bacillus subtilis deoxyribonucleic acid (DNA) previously cloned in Escherichia coli contains a gene (the 0.4-kilobase [kb] gene) whose transcription is activated at an early stage of spore development. To map the genetic location of the 0.4-kb gene, we constructed a hybrid plasmid that inserts a chloramphenicol resistance determinant into the B. subtilis chromosome by recombination at a site of homology between cloned B. subtilis DNA and the chromosome. This hybrid plasmid (p1949-2) was constructed from the E. coli plasmid pMB9, the B. sultilis chloramphenicol resistance plasmid pCM194 (whose replication function was inactivated), and B. subtilis DNA from the vicinity of the 0.4-kb gene. Transformation of B. subtilis cells to drug resistance by p1949-2 was dependent upon the B. subtilis RecE+ phenotype and resulted in specific and predictable changes in the pattern of endonuclease restriction sites in the 0.4-kb gene region of the chromosome. Chloramphenicol resistance in cells transformed by p1949-2 was mapped to the purA-cysA region of the B. subtilis chromosome, a region. In addition, DNA adjacent to the 0.4-kb gene was shown to contain the wild-type allele of genetic marker (tms-26) from that region.
    [Abstract] [Full Text] [Related] [New Search]