These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics and regulation of active calcium transport in inside-out red cell membrane vesicles.
    Author: Sarkadi B, Szász I, Gárdos G.
    Journal: Biochim Biophys Acta; 1980 May 23; 598(2):326-38. PubMed ID: 6769484.
    Abstract:
    Sealed, inside-out human red cell membrane vesicles, prepared by a modified method of Steck (Steck T.L. (1974) in Methods in Membrane Biology (Korn, E.D., ed.), Vol 2, pp. 245-281, Plenum Press, New York), accomplish an ATP and Mg2+-dependent uphill calcium uptake with a reproducible maximum rate of 12-15 nmol/mg vesicle protein per min under physiological conditions. This maximum rate is increased by about 60-70% in the presence of a heat-stable cytoplasmic activator protein (calmodulin) obtained from red cells. Calcium efflux from inside-out vesicles is smaller than 0.01 nmol/mg vesicle protein per min at intravesicular calcium concentrations between 0.1 and 20.0 mM. In the presence of Mg2+, active calcium uptake is supported by ATP, ITP, or UTP, but not by ADP, AMP, or p-nitrophenyl phosphate. The optimum pH for the process is 7.4-7.6, and the activation energy is 19-20 kcal/mol, irrespective of the presence or absence of calmodulin. Calcium uptake in inside-out vesicles is unaffected by ouabain or oligomycin, but blocked by low concentrations of lanthanum, ruthenium red, quercetin and phloretin. K+ and Na+, when compared to choline+ or Li+, significantly increase active calcium uptake. This stimulation by K+ and Na+ is independent of that by calmodulin. Concentrated red cell cytoplasm activates calcium uptake at low soluble protein:membrane protein ratios, while a 'deactivation' of the transport occurs at high cytoplasm:membrane protein ratios. A heat-labile cytoplasmic protein fraction antagonizing calmodulin activation, can be separated by DEAE-Sephadex chromatography. Based on these findings the regulation of active calcium transport in human red cells is discussed.
    [Abstract] [Full Text] [Related] [New Search]