These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Characteristics of a copper-dependent cross-linking reaction between two forms of cytochrome P-450 in rabbit-liver microsomal membranes.
    Author: McIntosh PR, Freedman RB.
    Journal: Biochem J; 1980 Apr 01; 187(1):227-37. PubMed ID: 6773520.
    Abstract:
    1. In liver microsomal membranes from adult rabbits treated with beta-naphthoflavone, reaction with Cu2+ salts plus 1,10-phenanthroline leads to the cross-linking of the two specifically beta-naphthoflavone-inducible cytochrome P-450 species, form 4 and form 6, to form homo- and hetero-dimer species. 2. The cross-linking is not reversed by treatment with 2-mercaptoethanol, so that it can be observed conveniently and specifically on conventional reducing sodium dodecyl sulphate/polyacrylamide gels. 3. The reaction occurs rapidly, and significant cross-linking is observed after 30s at all temperatures from -10 to 40 degrees C. 4. The cross-linking can be brought about by Cu2+ alone at concentrations greater than 0.5 mM, but not by 1,10-phenanthroline alone; at low Cu2+ concentrations, 1,10-phenanthroline enhances the cross-linking reaction, but high concentrations of 1,10-phenanthroline are inhibitory; the optimal molar ratio of Cu2+ to 1,10-phenanthroline is 4:1.5. The effect of Cu2+ is not mimicked by Mn2+, Fe3+, Fe2+, Co2+, Ni2+, Zn2+ or Ag+; Cu+ is probably also ineffective. 6. The cross-linking reaction is inhibited by the prior addition of high concentrations of EDTA or thiol compounds, by sodium dodecyl sulphate at greater than or equal to 0.1% and by sodium deoxycholate and non-ionic detergents at greater than or equal to 1%; the reaction cannot be reversed by incubation with EDTA or with thiol compounds after reaction with cupric phenanthroline; the cross-linking reaction is not inhibited by prior treatment of microsomal membranes with N-ethylmaleimide. 7. The chemical nature of the cross-linking reaction is unknown, but it is most unlikely that it involves the formation of intermolecular disulphide bonds. 8. The great specificity of the reaction makes it a promising tool for the study of molecular interactions between cytochrome P-450 species in intact microsomal membranes.
    [Abstract] [Full Text] [Related] [New Search]