These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Crystallographic nature of fluoride in enameloids of fish. Author: LeGeros RZ, Suga S. Journal: Calcif Tissue Int; 1980; 32(2):169-74. PubMed ID: 6773634. Abstract: X-ray diffraction studies on calcified tissues (teeth and/or scales) of fish and of shark showed that the presence of fluoride affects the crystallite size and lattice parameters of the apatite phase. An inverse correlation between F contents (ranging from 0.2 to 3.8 wt% F) and alpha-axis dimensions (9.441 to 9.375 +/- 0.003 A) exists for both synthetic and enameloid apatites and is consistent with the F-for-OH substitution in the apatite, idealized as Ca10(PO4)6(OH)2 and Ca10(PO4)6F2, for fluoride-free and maximum fluoride-substituted apatite, respectively. In synthetic systems, the incorporation of F is found to be dependent on the F concentration of the media from which the apatite formed. This dependency is also observed between F content of the dentine apatites and the F concentration of the water from which the fish can (i.e., less than 0.08 ppmF in fresh water, about 1.3 ppm in seawater). However, no such dependency was observed between the F incorporation in fish enameloid apatite and the F concentration in the water of origin. In some cases, the F incorporated in the enameloid apatite is much in excess of what can be expected from the F concentration of water. These observations suggest that in some fish, a fluoride-concentrating mechanism is operative during the formation of the enameloid but not during the formation of the dentine, and this mechanism appears to be specie-related.[Abstract] [Full Text] [Related] [New Search]