These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Calcium transport mechanisms in membrane vesicles from guinea pig brain synaptosomes.
    Author: Gill DL, Grollman EF, Kohn LD.
    Journal: J Biol Chem; 1981 Jan 10; 256(1):184-92. PubMed ID: 6778859.
    Abstract:
    Ca2+ transport mechanisms were investigated using membrane vesicles prepared from guinea pig brain synaptosomes by hypotonic lysis. Two major mechanisms of Ca2+ transport exist, Na+-Ca2+ exchange and ATP-dependent Ca2+ uptake. A third although minor component of Ca2+ uptake occurs under hyperpolarizing conditions (determined by increased uptake of [3H]tetraphenylphosphonium+). Na+-Ca2+ exchange results in a rapid increase of [Ca2+]i (up to 100-fold above [Ca2+]O), has a Km for Ca2+ of 40 microM, is fully reversed by added external Na+, is inhibited by agents dissipating Na+ gradients (monensin or veratridine), and is uninfluenced by mitochondrial inhibitors. ATP-dependent Ca2+ uptake has a higher affinity for CA2+ (Km = 12 microM), is dependent on Mg2+ or Mn2+, and is inhibited by beta, gamma-imidoadenosine 5'-triphosphate and VO43-, although only slightly (20%) inhibited by high concentrations of mitochondrial inhibitors. Both mechanisms are temperature-dependent, fully reversed by A23187, and higher in the presence of external K+. Ca2+ loaded in vesicles via ATP-dependent Ca2+ uptake is rapidly effluxed upon addition of external Na+ (as for Na+-Ca2+ exchange). Therefore a single population of vesicles exists containing both Ca2+ transport mechanisms. The two mechanisms are independent since they accumulate Ca2+ additively, are selectively inhibited by monensin and VO43-, and show distinct specificity toward other divalent cations and La3+. Although independent, Na+ (100 mM) inhibits ATP-dependent Ca2+ uptake (Km for ATP increased from 40 to 300 microM) in the absence of any net Na+ movement. Since Na+-Ca2+ exchange functions in the synaptosomal plasma membrane, the results suggest that both Ca2+ transport mechanisms originate from this membrane and function in the present experiments in inverted plasma membrane vesicles.
    [Abstract] [Full Text] [Related] [New Search]