These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Microbial oxidation of gaseous hydrocarbons: production of alcohols and methyl ketones from their corresponding n-alkanes by methylotrophic bacteria.
    Author: Hou CT, Patel RN, Laski AI, Marczak I, Barnabe N.
    Journal: Can J Microbiol; 1981 Jan; 27(1):107-15. PubMed ID: 6783282.
    Abstract:
    Cell suspensions of methane-utilizing bacteria oxidized n-alkanes (propane, butane, pentane, and hexane) to their corresponding alcohols and methyl ketones. The product alcohols and methyl ketones accumulated extracellularly. Methanol-grown cells of methane-utilizing bacteria did not oxidize n-alkanes. The product primary alcohol was detected in a cell-free system but only in a trace amount in the whole cell system due to further oxidation. The optimum conditions for in vivo formation of secondary alcohol and methyl ketone from n-alkanes were compared between two distinct types of C1-utilizing microbes: Methylococcus capsulatus M1 (type I membrane) and Methylosinus trichosporium OB3b (type II membrane). The production of acetone or 2-butanone from n-alkanes ceased after 3 h of incubation for strain OB3b and 5 h for strain M1. The amount of these methyl ketones did not decline during 30 h of incubation. The optimum pH for the in vivo production of methyl ketones from n-alkanes by both strains was around 7.0. However, secondary alcohols were accumulated at higher amounts around pH 6.0. The optimum temperature for the in vivo production of methyl ketones from n-alkanes was around 40 degrees C for strain M1 and around 30-35 degrees C for strain OB3b. Higher accumulation of secondary alcohol was detected at 30-40 degrees C for strain M1 and 25 degrees C for strain OB3b. The alkane hydroxylation enzyme was located in the cell-free particulate fraction precipitated between 10 000 and 40 000 X g centrifugation. The yield of primary and secondary alcohols from n-alkane in the cell-free system was about equal. Evidence obtained indicates that the hydroxylation of n-alkanes (both terminal and subterminal oxidations) is also catalyzed by the methane hydroxylation - alkene epoxidation enzyme system.
    [Abstract] [Full Text] [Related] [New Search]